References

[AJK+12]

Brian J. Anderson, Catherine L. Johnson, Haje Korth, Reka M. Winslow, Joseph E. Borovsky, Michael E. Purucker, James A. Slavin, Sean C. Solomon, Maria T. Zuber, and Ralph L. McNutt Jr. Low-degree structure in mercury’s planetary magnetic field. Journal of Geophysical Research: Planets, 2012. doi:10.1029/2012JE004159.

[Bag94]

Fran Bagenal. Empirical model of the io plasma torus: voyager measurements. Journal of Geophysical Research: Space Physics, 99(A6):11043–11062, 1994. doi:10.1029/93JA02908.

[BGB+17]

B. Bonfond, D. Grodent, S.V. Badman, J. Saur, J.-C. Gérard, and A. Radioti. Similarity of the jovian satellite footprints: spots multiplicity and dynamics. Icarus, 292:208–217, 2017. doi:10.1016/j.icarus.2017.01.009.

[BGG+09]

B. Bonfond, D. Grodent, J.-C. Gérard, A. Radioti, V. Dols, P. A. Delamere, and J. T. Clarke. The io uv footprint: location, inter-spot distances and tail vertical extent. Journal of Geophysical Research: Space Physics, 114(A7):, 2009. doi:10.1029/2009JA014312.

[Con92]

J. E. P. Connerney. Doing more with Jupiter’s magnetic field. In S. J. Bauer and H. O. Rucker, editors, Planetary Radio Emissions III, pages 13–33. Austria Acad. of Sci. Press, Vienna, 1992. URL: https://austriaca.at/?arp=0x0015cd0e.

[Con07]

J. E. P. Connerney. Planetary Magnetism. In Tilman Spohn, editor, Treatise on Geophysics: Planets and Moons, volume 10, pages 243–280. Elsevier, 2007.

[CAN81]

J. E. P. Connerney, M. H. Acuna, and N. F. Ness. Modeling the Jovian current sheet and inner magnetosphere. J. Geophys. Res., 86:8370–8384, 1981. doi:10.1029/JA086iA10p08370.

[CAN84]

J. E. P. Connerney, M. H. Acuna, and N. F. Ness. The Z3 Model of Saturn’s Magnetic Field and the Pioneer 11 Vector Helium Magnetometer Observations. J. Geophys. Res., 89:7541–7544, 1984. doi:10.1029/JA089iA09p07541.

[CAN87]

J. E. P. Connerney, M. H. Acuna, and N. F. Ness. The magnetic field of Uranus. J. Geophys. Res., 92:15329–15336, 1987. doi:10.1029/JA092iA13p15329.

[CANS98]

J. E. P. Connerney, M. H. Acuna, N. F. Ness, and T. Satoh. New Models of Jupiter’s Magnetic Field Constrained by the Io Flux Tube Footprint. J. Geophys. Res., 103:11929–11939, 1998. doi:10.1029/97JA03726.

[CKO+18]

J. E. P. Connerney, S. Kotsiaros, R. J. Oliversen, J. R. Espley, J. L. Joergensen, P. S. Joergensen, J. M. G. Merayo, and et al. A New Model of Jupiter’s Magnetic Field From Juno’s First Nine Orbits. Geophys. Res. Lett., 45:2590–2596, 2018. doi:10.1007/s11214-009-9621-7.

[CTHJ20]

J. E. P. Connerney, S. Timmins, M. Herceg, and J. L. Joergensen. A Jovian Magnetodisc Model for the Juno Era. Journal of Geophysical Research (Space Physics), 125(10):e28138, October 2020. doi:10.1029/2020JA028138.

[CTO+22]

J. E. P. Connerney, S. Timmins, R. J. Oliversen, J. R. Espley, J. L. Joergensen, S. Kotsiaros, P. S. Joergensen, J. M. G. Merayo, M. Herceg, J. Bloxham, K. M. Moore, A. Mura, A. Moirano, S. J. Bolton, and S. M. Levin. A New Model of Jupiter’s Magnetic Field at the Completion of Juno’s Prime Mission. Journal of Geophysical Research (Planets), 127(2):e07055, February 2022. doi:10.1029/2021JE007055.

[DS90]

Davis, L. Jr and E. Smith. A Model of Saturn’s Magnetic Field Based on All Available Data. J. Geophys. Res., 95:15257–15261, 1990. doi:10.1029/JA095iA09p15257.

[Her09]

F. Herbert. Aurora and magnetic field of uranus. J. Geophys. Res., 2009. doi:10.1029/2009JA014394.

[HBBL17]

S. L. G. Hess, B. Bonfond, F. Bagenal, and L. Lamy. A Model of the Jovian Internal Field Derived from in-situ and Auroral Constraints. In PRE8 Proceedings, volume 8. Austrian Academy of Science, 2017. doi:10.1553/PRE8s157.

[HBZG11]

S. L. G. Hess, B. Bonfond, P. Zarka, and D. Grodent. Model of the Jovian Magnetic Field Topology Constrained by the Io Auroral Emissions. J. Geophys. Res., 116:177, 2011. doi:10.1029/2010JA016262.

[HCZ08]

SLG Hess, B Cecconi, and Philippe Zarka. Modeling of Io-Jupiter Decameter Arcs, Emission Beaming and Energy Source. Geophys. Res. Lett., 2008. doi:10.1029/2008GL033656.

[HTK98]

David P. Hinson, Joseph D. Twicken, and E. Tuna Karayel. Jupiter’s ionosphere: new results from voyager 2 radio occultation measurements. Journal of Geophysical Research: Space Physics, 103(A5):9505–9520, 1998. doi:10.1029/97JA03689.

[HBB19]

P. C. Hinton, F. Bagenal, and B. Bonfond. Alfvén wave propagation in the io plasma torus. Geophysical Research Letters, 46(3):1242–1249, 2019. doi:10.1029/2018GL081472.

[HGL+23]

V. Hue, G. R. Gladstone, C. K. Louis, T. K. Greathouse, B. Bonfond, J. R. Szalay, A. Moirano, R. S. Giles, J. A. Kammer, M. Imai, A. Mura, M. H. Versteeg, G. Clark, J. -C. Gérard, D. C. Grodent, J. Rabia, A. H. Sulaiman, S. J. Bolton, and J. E. P. Connerney. The Io, Europa, and Ganymede Auroral Footprints at Jupiter in the Ultraviolet: Positions and Equatorial Lead Angles. Journal of Geophysical Research (Space Physics), 128(5):e2023JA031363, May 2023. doi:10.1029/2023JA031363.

[LHC+19]

C K Louis, S L G Hess, B Cecconi, P Zarka, L Lamy, S Aicardi, and A Loh. ExPRES: an Exoplanetary and Planetary Radio Emissions Simulator. Astronomy and Astrophysics, 627:A30, 2019. doi:10.1051/0004-6361/201935161.

[LLZ+17a]

C K Louis, L Lamy, P Zarka, B Cecconi, and S L G Hess. Detection of Jupiter decametric emissions controlled by Europa and Ganymede with Voyager/PRA and Cassini/RPWS. J. geophys. Res. Space Physics, 122:1–20, September 2017. doi:10.1002/2016JA023779.

[LLZ+17b]

C K Louis, L Lamy, P Zarka, B Cecconi, M Imai, W S Kurth, G Hospodarsky, S L G Hess, X Bonnin, S J Bolton, J E P Connerney, and S M Levin. Io-Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations. Geophys. Res. Lett., pages 1–17, 2017. doi:10.1002/2017GL073036.

[Wu85]

Chi-Wei Wu. Kinetic cyclotron and synchroton Maser instabilities: Radio emission processes by direct amplification of radiation. Space Sci. Rev., 41:215–298, 1985.